Teleskopy Hubble i Spitzer badają odległe kwazary

Teleskopy Hubble i Spitzer badają odległe kwazary
Teleskopy Hubble i Spitzer badają odległe kwazaryOriginal Press Release
Kwazary to oślepiające kosmiczne latarnie zasilane przez czarne dziury pochłaniające schwytaną materię, która w czasie tego procesu ogrzewa się do temperatur milionów stopni.

Kwazary będące efektem zderzeń galaktyk są bardzo jasne. Obiekty, którym przyjrzeliśmy się w naszych badaniach są bardziej typowe. Są znacznie ciemniejsze. Najjaśniejsze kwazary – będące efektem fuzji galaktyk – zostały najdokładniej poznane, ponieważ są tak jasne a ich  macierzyste galaktyki tak zdeformowane. Ale typowe kwazary są w rzeczywistości tam gdzie ma miejsce większość wzrostu czarnych dziury. Są one normą, i nie potrzebują dramatycznych zderzeń by rozbłysnąć

Ashley Davies, JPL

Przegląd 30 macierzystych galaktyk zawierających kwazary, przeprowadzony za pomocą dwóch obserwatoriów NASA – teleskopów kosmicznych Hubble Space Telescope i Spitzer Space Telescope wykazała, że 26 z tych galaktyk nie wykazuje śladów zderzenia z sąsiadami. Tylko jedna z badanych galaktyk nosiła wyraźnie ślady interakcji z inną galaktyką. Badane galaktyki znajdowały się w odległości (i czasie) około 8 do 12 miliardów lat temu, w okresie uważanym za szczytu epoki wzrostu czarnych dziur.

Badanie prowadzone przez Kevina Schawinskiego z Yale University, wzmacnia teorię, że wzrost najbardziej masywnych czarnych dziur we wczesnym Wszechświecie był napędzany przez wiele niewielkich wydarzeń zachodzących w długim okresie czasu, a nie dramatyczne, masywne, i krótko trwające fuzje.

Artykuł Schawinskiego i jego zespołu został przyjęty do druku na łamach Monthly Notices of the Royal Astronomical Society.

Źródła:

Most Quasars Live on Snacks, Not Large Meals

Black holes in the early universe needed a few snacks rather than one giant meal to fuel their quasars and help them grow, a new study shows.

Quasars are the brilliant beacons of light that are powered by black holes feasting on captured material, and in the process, heating some of the matter to millions of degrees. The brightest quasars reside in galaxies distorted by collisions with other galaxies. These encounters send lots of gas and dust into the gravitational whirlpool of hungry black holes.

Now, however, astronomers are uncovering an underlying population of fainter quasars that thrive in normal-looking spiral galaxies. They are triggered by black holes snacking on such tasty treats as a batch of gas or the occasional small satellite galaxy.

A census of 30 quasar host galaxies conducted with two of NASA's premier observatories, the Hubble Space Telescope and Spitzer Space Telescope, has found that 26 of the host galaxies bear no tell-tale signs of collisions with neighbors, such as distorted shapes. Only one galaxy in the sample shows evidence of an interaction with another galaxy. The galaxies existed roughly 8 billion to 12 billion years ago, during a peak epoch of black-hole growth.

The study, led by Kevin Schawinski of Yale University, bolsters evidence that the growth of most massive black holes in the early universe was fueled by small, long-term events rather than dramatic short-term major mergers.

„Quasars that are products of galaxy collisions are very bright,” Schawinski said. „The objects we looked at in this study are the more typical quasars. They're a lot less luminous. The brilliant quasars born of galaxy mergers get all the attention because they are so bright and their host galaxies are so messed up. But the typical bread-and-butter quasars are actually where most of the black-hole growth is happening. They are the norm, and they don't need the drama of a collision to shine.”

Schawinski's science paper has been accepted for publication in a letter to the Monthly Notices of the Royal Astronomical Society.

For his analysis, Schawinski analyzed galaxies observed by the Spitzer and Hubble telescopes in the Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey (CANDELS). He chose 30 dust-enshrouded galaxies that appeared extremely bright in infrared images taken by the Spitzer telescope, a sign that their resident black holes are feasting on infalling material. The dust is blocking the quasar's light at visible wavelengths. But infrared light pierces the dust, allowing Schawinski to study the galaxies' detailed structure. The masses of those galaxies are comparable to our Milky Way's.

Schawinski then studied the galaxies in near-infrared images taken by Hubble's Wide Field Camera 3. Hubble's sharp images allowed careful analysis of galaxy shapes, which would be significantly distorted if major galaxy mergers had taken place and were disrupting the structure. Instead, in all but one instance, the galaxies show no such disruption.

Whatever process is stoking the quasars, it's below the detection capability of even Hubble. „I think it's a combination of processes, such as random stirring of gas, supernovae blasts, swallowing of small bodies, and streams of gas and stars feeding material into the nucleus,” Schawinski said.

A black hole doesn't need much gas to satisfy its hunger and turn on a quasar. „There's more than enough gas within a few light-years from the center of our Milky Way to turn it into a quasar,” Schawinski explained. „It just doesn't happen. But it could happen if one of those small clouds of gas ran into the black hole. Random motions and stirrings inside the galaxy would channel gas into the black hole. Ten billion years ago, those random motions were more common and there was more gas to go around. Small galaxies also were more abundant and were swallowed up by larger galaxies.”

The galaxies in Schawinski's study are prime targets for the James Webb Space Telescope, a large infrared observatory scheduled to launch later this decade. „To get to the heart of what kinds of events are powering the quasars in these galaxies, we need the Webb telescope. Hubble and Spitzer have been the trailblazers for finding them.”

The team of astronomers in this study consists of K. Schawinski, B.D. Simmons, C.M. Urry, and E. Glikman (Yale University), and E. Treister (Universidad de Concepción, Chile).

Dodaj komentarz

Twój adres email nie zostanie opublikowany. Pola, których wypełnienie jest wymagane, są oznaczone symbolem *