Obserwatorium Herschel bada narodziny olbrzymiej planety

Obserwatorium Herschel bada narodziny olbrzymiej planetyOriginal Press Release
Astronomowie wykorzystali obserwatorium kosmiczne ESA Herschel Space Observatory by zbadać osobliwego brązowego karła 2M1207, któremu towarzyszy planeta pięciokrotnie masywniejsza od Jowisza oraz pyłowy dysk.

To pierwszy przypadek zarejestrowania brązowego karła 2M1207 w paśmie fal sub-milimetrowych. Badania te ilustrują możliwości jakie w z badaniach mechanizmów prowadzących do narodzin obiektów o masach planet towarzyszących gwiazdom i obiektom sub-gwiazdowym daje obserwatorium Herschel

Göran Pilbratt
ESA Herschel

Brązowe karły są zagadkowa klasa obiektów, które zajmują miejsce gdzieś pomiędzy planetami a gwiazdami. Zbyt mało masywne by rozpalić  w swych jądrach wodór jak czynią to gwiazdy, jednak są na tyle bardziej masywne niż planety, że przeciwieństwie do nich mogą przez krótki okres spalać deuter w swym wnętrzu. Od odkrycia w 1995 roku pierwszego brązowego karła, astronomowie odkryli w Drodze Mlecznej setki tych obiektów i opracowują teorie dotyczące pochodzenia tych dziwnych ciał niebieskich.

Część brązowych karłów otaczają dyski gazu i pyłu, bardzo podobne do wokółgwiezdnych dysków obserwowanych wokół młodych gwiazd. Wokół kilku krążą planety o cechach gazowych olbrzymów i masach podobnych lub większych niż Jowisz. Ponieważ odległość tych masywnych  planet od macierzystych karłów jest zazwyczaj większa niż odległości obserwowane dla większości gazowych egzoplanet towarzyszących gwiazdom, egzoplanety towarzyszące brązowym karłom umożliwiają prowadzenie badań procesów prowadzących to powstania olbrzymich planet w dużych odległościach od swoich gwiazd macierzystych.

Istnieją dwie, konkurujące ze sobą teorie opisujące mechanizmy prowadzące do powstawanie olbrzymich gazowych planet wokół gwiazd. Pierwsza z nich to standardowy scenariusz akrecji materii wokół skalnego jądra. Druga – alternatywna – w której planeta powstaje w wyniku fragmentacji dysku wokółgwiezdnego. W mechanizmie akrecji, skaliste jądro powstaje jako pierwsze z połączenia się ziaren pyłu w dysku, a dopiero później jądro przechwytuje gaz z otoczenia, w końcu stając się olbrzymią gazową planetą. W modelu fragmentacji, dysk wokółgwiezdny zapada się z powodu swojej wagi rozpadając jednocześnie na mniejsze fragmenty, których minimalna masa zależy od jego początkowej całkowitej masy. Tak powstają proto-planety, która później przekształcają się w egzoplanety. Wydaje się, że wokół brązowych karłów zachodzą oba procesy.

Teoria sugeruje, że fragmentacja dysku jest bardziej efektywne w tworzeniu planet na dużych odległościach od ciała macierzystego: brązowe karły, którym towarzyszą planety są zatem kluczowym testem do badania poprawności alternatywnego modelu powstawania olbrzymich planet. Dlatego właśnie zespół astronomów kierowany przez Basmah Riaz z Uniwersytetu w Hertfordshire w Wielkiej Brytanii, wykorzystał obserwatorium ESA Herschel Space Observatory do zbadania niezwykłego brązowego karła, o którym wiadomo było, że posiada zarówno dysk, jak i planetarnego towarzysza.

Brązowy karzeł o katalogowym oznaczeniu 2MASSW J1207334-393254 (w skrócie 2M1207) to obiekt stosunkowo dojrzały, mający około dziesięć milionów lat, i masę 25 razy większą od Jowisza. Znajduje się on w odległości około 170 lat świetlnych od nas i należy do grupy gwiazd znanych jako asocjacja TW Hydrae. Jago planetarny towarzysz, gazowy gigant pięć razy masywniejszy od Jowisza, był pierwszą egzoplanetą która została bezpośrednio sfotografowana. Leży w bardzo dużej odległości od 2M1207 – szacowana odległość pomiędzy tymi dwoma ciałami wynosi 55 jednostek astronomicznych.

„Z niecierpliwością oczekiwaliśmy na możliwość wykorzystania SPIRE – instrumentu do obserwacji w długich falach zainstalowanego w obserwatorium Herschel – do uzyskania pierwszego obrazu tego brązowego karła w sub-milimetrowej części widma „- mówi Riaz. Umożliwiając badanie emisji zimnego pyłu, obserwacje w tej części widma dostarczają istotnych informacji na temat dysku wokół 2M1207. Choć bowiem jest tylko śladowym składnikiem masy dysku, który jest głównie zbudowany z gazu, zimny pył rozpościera się w znacznej jego części, a tym samym pozwala astronomom badać całą jego strukturę. -” Gdy dzięki danym uzyskanym przez SPIRE stworzyliśmy nowy model dysku okazało się, że jego całkowita masa jest około 3 do 5 razy większa od masy Jowisza, a promień wynosi pomiędzy 50 i 100 J.A.”

Ponieważ 2M1207 to najstarszy znany brązowy karzeł otoczony przez dysk, astronomowie byli ciekawi istnienia ewentualnej korelacji między masami dysków a wiekiem macierzystych brązowych karłów . „Co ciekawe, masa dysku 2M1207 jest podobna do dysków obserwowanych wokół dużo młodszych, mających zaledwie 1 milion lat, brązowych karłów”- zauważa Riaz. Sugeruje to, że procesy rozpraszania dysków wokół brązowych karłów mogą zachodzić znacznie wolniej, niż w dyskach wokół normalnych gwiazd, gdzie odkryto tendencję zmniejszania się masy dysku wraz z wiekiem gwiazd.

Poznanie masy i rozmiarów dysku wokół brązowego karła, umożliwiło astronomom wskazanie mechanizmu powstania jego planetarnego towarzysza. -” Wiedzieliśmy, że planeta towarzysząca 2M1207 nie mogła powstać w wyniku akrecji, ponieważ zajęłoby to znacznie dłużej niż wynosi wiek tego układu „- wyjaśnia Riaz. Nowe dane zebrane przez obserwatorium Herschel po raz pierwszy umożliwiły przetestowanie alternatywnego scenariusza formacji egzoplanety. -„Masa dysku wskazuje, że to ciało o masie planety prawdopodobnie powstało bezpośrednio w wyniku fragmentacji dysku, który mógł być bardziej masywny w młodzieńczych latach brązowego karła.”

Układ, na który składają się 2M1207 i jego towarzysz, stanowi pierwszy dowód wskazujący, że ciała o masach planet mogą powstawać w wyniku fragmentacji dysku, kwestionując w ten sposób obecnie dominujący scenariusz akrecji. Warto jednak pamiętać, że istnieją również inne możliwe scenariusze, które mogłyby wyjaśnić powstawanie tego systemu – wśród nich ten, w którym zarówno brązowy karzeł, jak i jego towarzysz powstały w tym samym czasie jako układ podwójny.

Źródła:

Herschel's new view on giant planet formation

Astronomers have used ESA's Herschel Space Observatory to observe 2M1207, a peculiar brown dwarf with its own circumstellar disc and a planetary companion five times more massive than Jupiter. These new data provide the first image of this system taken at sub-millimetre wavelengths and show that the disc's mass amounts to a few times the mass of Jupiter. The presence of such a massive disc around this ten-million-year old brown dwarf suggests that its planetary companion formed directly from the disc's fragmentation. This reopens the debate on how giant planets form around stellar and sub-stellar objects.

Brown dwarfs are a puzzling class of objects suspended between stellar and planetary status. Not massive enough to ignite hydrogen fusion in their cores, like stars do, they are more massive than planets and thus able – unlike planets – to burn deuterium for a brief period in their interiors. Since the first brown dwarf was discovered, in 1995, astronomers have detected hundreds of them in our Galaxy, the Milky Way, and have speculated about the origin of these curious celestial bodies.

Like stars, a number of brown dwarfs are surrounded by discs of gas and dust, very similar to circumstellar discs seen around young stars. A handful of them are also known to possess planetary companions with the properties of gas giants and masses similar to or larger than Jupiter's. Since the separation between these planetary-mass objects and their parent bodies is larger than the typical values observed for most gas giant exoplanets, these brown dwarf planetary companions are valuable when investigating how giant planets form at rather large distances from their parent bodies.

Two main physical mechanisms are known to result in the formation of giant gaseous planets around stars: the 'standard' scenario of core accretion and the 'alternative' one invoking disc fragmentation. In the core accretion mechanism, a rocky core forms first from the coagulation of dust grains in the disc, and only later does this solid core start accreting gas from its surroundings, eventually growing into a giant gaseous planet. In the disc fragmentation model, the circumstellar disc collapses due to its own weight into smaller fragments, whose minimum mass depends on the disc's total mass, thus forming proto-planets that later evolve into proper planets. Both mechanisms could well be at play around brown dwarfs as well.

Theory suggests that disc fragmentation is more efficient at forming giant planets at large radial distances from the parent body: brown dwarfs with planetary companions are thus a crucial testbed to probe the validity of this alternative model for giant planet formation. For this purpose, a team of astronomers led by Basmah Riaz from the University of Hertfordshire, UK, have exploited ESA's Herschel Space Observatory to study a peculiar brown dwarf which is known to possess both a disc and a planetary companion.

Named 2MASSW J1207334-393254, or 2M1207 for short, this brown dwarf is quite evolved, with an age of about 10 million years, and has a mass that amounts to 25 times that of Jupiter. It is located at a distance of about 170 light years from us and belongs to the low-density group of stars known as the TW Hydrae association. The brown dwarf's planetary companion, a gaseous giant five times more massive than Jupiter, was the first extrasolar planet to have been directly imaged and lies at a very large distance from 2M1207 – the projected distance between the two bodies measuring 55 astronomical units (AU).

„We have been looking forward to using SPIRE, the long-wavelength instrument on Herschel, to obtain the first view of this brown dwarf in the sub-millimetre portion of the spectrum,” explains Riaz. By tracing emission from cold dust, sub-millimetre observations provide crucial information about the disc around 2M1207. Although only a trace component in terms of the disc's mass, which mainly consists of gas, cold dust extends out to the far reaches of the disc and thus allows astronomers to probe its entire extent. „After modelling the system with the new data, we find that the disc's total mass amounts to about 3 to 5 times the mass of Jupiter and that its radius ranges between 50 and 100 AU,” she adds.

Since 2M1207 is the oldest known brown dwarf possessing a disc, the astronomers inquired into a possible correlation between disc masses and the age of their parent brown dwarfs. „Interestingly, the mass of 2M1207's disc is similar to those of other discs observed around much younger brown dwarfs, with ages of only 1 million years,” notes Riaz. This suggests that dissipation processes of discs around brown dwarfs may take place on much slower time scales as opposed to discs around fully-fledged stars, where a trend of decreasing disc masses for increasingly older objects is recorded.

By knowing the mass and size of the disc around this brown dwarf, the astronomers have also gained crucial insight into the origin of its planetary companion. „We knew that the planetary companion to 2M1207 did not form through core accretion, because such a process would have taken much longer than the system's age,” explains Riaz. For the first time, the new Herschel data allowed the alternative formation scenario to be tested quantitatively. „The mass of the disc indicates that this planetary-mass body has likely arisen directly from fragmentation of the disc, which may have been more massive in the brown dwarf's early days,” she adds.

The system comprising 2M1207 and its companion represents the first evidence showing that planetary-mass bodies can indeed originate from disc fragmentation, thus challenging the currently leading scenario for the formation of giant planets. However, there are also other possible scenarios that could explain the formation of this system – for example, both the brown dwarf and its planetary-mass companion might have formed at the same time as a binary system – and the issue remains open.

„This is the first detection of the brown dwarf 2M1207 in the sub-millimetre range”, comments Göran Pilbratt, ESA's Herschel Project Scientist. „The present study showcases Herschel's capability to investigate the mechanisms that lead to the formation of planetary-mass companions to stellar and sub-stellar objects.”

Written by admin

Dodaj komentarz

Twój adres email nie zostanie opublikowany. Pola, których wypełnienie jest wymagane, są oznaczone symbolem *