Nowy model ukazuje efekty uderzenia olbrzymiego meteorytu

Nowy model ukazuje efekty uderzenia olbrzymiego meteorytuOriginal Press Release
Dążąc do lepszego zrozumienia rozmiarów zniszczenia i śmierci, które byłyby wynikiem uderzenia w Ziemię ogromnego  meteorytu, naukowcy z Uniwersytetu Princeton opracowali nowy model, który pozwala nie tylko dokładniej symulować sejsmiczne efekty takiego uderzenia, ale pomaga odkryć nowe informacje o powierzchni i wnętrzu planety w oparciu o dawne kolizje.

Stworzyliśmy pierwszy model uwzględniający, jak cechy powierzchni i kształt Ziemi wpływały na rozprzestrzenianie się aktywności sejsmicznej będącej efektem uderzenia meteorytu. Dla Ziemi, wyliczenia te są zwykle wykonane dla modelu gładkiej, doskonałej kuli. Okazało się jednak, że cechy powierzchni planety lub księżyca mają ogromny wpływ na to jak duża będzie dala uderzeniowa – zatem bardzo ważne jest aby brać te cechy pod uwagę

Matthias Meschede
University of Munich

Zespół naukowców z laboratorium prof. Jeroena Trompa na Wydziale Nauk o Ziemi w Princeton przeprowadził symulowane uderzenie meteorytu, który utworzył krater Chicxulub w Meksyku, a którego uderzenie miało energię 2 miliony razy większą niż eksplozja bomby wodorowej. Znaczna większość naukowców sądzi, że uderzenie to spowodowało masowe wymieranie dinozaurów 65 milionów lat temu. Symulacja przeprowadzona przez zespół wykazała, że fale sejsmiczne wygenerowane przez uderzenie były bardziej rozproszone, w związku z czym nastąpiły mniej poważne przemieszczenia gruntu, słabsze tsunami i aktywność sejsmiczna i wulkaniczna, niż dotąd sądzono.

Jak donoszą autorzy nowa metoda symulacji przeprowadzona na Princeton może także pomóc naukowcom uzyskać wgląd w niewidzialne detale powierzchni i wnętrza innych planet i księżyców. Symulacje pozwalają bowiem wyliczyć siłę działającą na przeciwfokus uderzenia – obszar leżący na antypodach krateru, gdzie energia z początkowego zderzenia skupia się na podobieństwo drugiego, mniejszego uderzenia. Naukowcy odkryli, że punkt jest określony jek cechy i skład uderzonego obiektu kierują i absorbują fale sejsmiczne. Naukowcy mogą zatem zidentyfikować cechy planety lub księżyca porównując krater z pozostałościami utworzonymi na antypodach by obliczyć, w jaki sposób rozprzestrzeniała się fala uderzeniowa.

Głównym autorem badań jest Matthias Meschede z Uniwersytetu w Monachium współpracując z Conorem Myhrvoldemoraz dyrektorem Instytutu prof. Jeroenem Trompem. Matthis tak wyjaśnia proces budowania modelu i poczynione odkrycia:

„Po uderzenia meteorytu fale sejsmiczne przemieszczają się po powierzchni Ziemi, na podobieństwo fal na powierzchni stawu, do którego wrzucimy kamień. Fale te podróżują dookoła globu by spotkać się w jednym punkcie po przeciwnej stronie od uderzenia znanym jako jego antypody. Nasz model pokazuje, że ponieważ Ziemia jest eliptyczne, a jej powierzchnia jest niejednorodna fale te podróżują z różnymi prędkościami w różnych obszarach, co zmienia miejsce, gdzie fale kumulują się po drugiej stronie Ziemi, jak również zmienia ich amplitudy w tym miejscu. Na fale te wpływa również budowa wnętrza planety. Efekty na antypodach jest wynikiem całości tych oddziaływań.”

„Zaczęliśmy od pytania, czy uderzenie meteorytu w pobliżu Chicxulub można powiązać z innymi teoriami wyjaśniającymi wymieranie pod koniec Kredy. Na przykład, z znaną teorią, wg której meteoryt wywołał ogromne erupcje wulkaniczne, które zmieniły klimat. Teoria ta sugeruje, że wybuchy miały miejsce w Trapach Dekanu w Indiach, w okolicach leżących w owym momencie historii mniej więcej po przeciwnej stronie Ziemi od krateru Chicxulub. Jednak ponieważ Ameryka Północna leżała wówczas bliżej Europy a Indie – Madagaskaru, wydawało się wątpliwe, by Trapy Dekanu były wówczas na antypodach Chicxulub.”

„Jeśli chodzi o masowe wymieranie, z naszych pomiarów wynika, że uderzenie wielkości Chicxulub było zbyt małe, aby powodować tak duże wybuch wulkanu, jak te, które miały miejsce w Trapach Dekanu. Nasz model pokazuje, że skupienie się fali sejsmicznej na antypodach zostało ogromnie zawyżone przez wcześniejsze obliczenia, wykorzystujące model kulistej, idealnej Ziemi.”

„Przemieszczenia gruntu Ziemi w tych modelach wynosiły 15 metrów, co jest ekstremalnym wynikiem. Pierwszym owocem naszego modelu było określenie, że odkształcenie te były znacznie mniejsze – w granicach trzech do pięciu metrów. Na sferycznym modelu wszystkie fale spotykają się dokładnie w jednym punkcie i – w efekcie – mają ogromne amplitudy. Odkryliśmy jednak, że fale są zakłócane przez ukształtowanie powierzchni i przyjmują bardziej poszarpaną formę, co oznacza mniej energii koncentrującej się na antypodach.”

Źródła:

Impact study: Princeton model shows fallout of a giant meteorite strike

Seeking to better understand the level of death and destruction that would result from a large meteorite striking the Earth, Princeton University researchers have developed a new model that can not only more accurately simulate the seismic fallout of such an impact, but also help reveal new information about the surface and interior of planets based on past collisions.

Princeton researchers created the first model to take into account Earth's elliptical shape, surface features and ocean depths in simulations of how seismic waves generated by a meteorite collision would spread across and within the planet. Current projections rely on models of a featureless spherical world with nothing to disrupt the meteorite's impact, the researchers report in the October issue of Geophysical Journal International.

The researchers — based in the laboratory of Jeroen Tromp, the Blair Professor of Geology in Princeton's Department of Geosciences — simulated the meteorite strike that caused the Chicxulub crater in Mexico, an impact 2 million times more powerful than a hydrogen bomb that many scientists believe triggered the mass extinction of the dinosaurs 65 million years ago. The team's rendering of the planet showed that the impact's seismic waves would be scattered and unfocused, resulting in less severe ground displacement, tsunamis, and seismic and volcanic activity than previously theorized.

The Princeton simulations also could help researchers gain insight into the unseen surface and interior details of other planets and moons, the authors reported. The simulations can pinpoint the strength of the meteorite's antipodal focus — the area of the globe opposite of the crater where the energy from the initial collision comes together like a second, smaller impact. The researchers found this point is determined by how the features and composition of the smitten orb direct and absorb the seismic waves. Scientists could identify the planet or moon's characteristics by comparing a crater to the remnants of the antipodal point and calculating how the impact waves spread.

Lead author Matthias Meschede of the University of Munich developed the model at Princeton through the University's Visiting Student Research Collaborators program with co-authors Conor Myhrvold, who earned his bachelor's degree from Princeton in 2011, and Tromp, who also is director of Princeton's Institute for Computational Science and Engineering and a professor of applied and computational mathematics. Meschede describes the findings as follows:

„We have developed the first model to account for how Earth's surface features and shape would influence the spread of seismic activity following a meteorite impact. For the Earth, these calculations are usually made using a smooth, perfect sphere model, but we found that the surface features of a planet or a moon have a huge effect on the aftershock a large meteorite will have, so it's extremely important to take those into account.

„After a meteorite impact, seismic waves travel outward across the Earth's surface like after a stone is thrown in water. These waves travel all the way around the globe and meet in a single point on the opposite side from the impact known as the antipode. Our model shows that because the Earth is elliptical and its surface is heterogeneous those waves travel with different speeds in different areas, changing where the waves end up on the other side of the world and the waves' amplitude when they get there. These waves also are influenced by the interior. The effect on the opposite side is a result of the complete structure.

„We began by asking whether the meteorite that hit the Earth near Chicxulub could be connected to other late-Cretaceous mass-extinction theories. For example, there's a prominent theory that the meteorite triggered huge volcanic eruptions that changed the climate. These eruptions are thought to have originated in the Deccan Traps in India, approximately on the opposite side of the Earth from the Chicxulub crater at the time. Because North America was closer to Europe and India was closer to Madagascar during the Cretaceous period, however, it seemed questionable that the Deccan Traps were at the Chicxulub impact's antipode.

„Regarding the mass extinction, we saw from our measurements that a Chicxulub-sized impact alone would be too small to cause such a large volcanic eruption as what occurred at the Deccan Traps. Our model shows that the antipodal focusing of the seismic wave from such an impact was hugely overestimated in previous calculations, which used a spherical-Earth model.

„The Earth's maximum ground displacement at this point has been calculated to be 15 meters, which is extreme. The first outcome of our model was that this is reduced by a large amount to about three to five meters. On the spherical model, all the waves come together at exactly one point and, as a result, have a huge amplitude. We found the waves are disturbed by surface features and take on a more ragged structure, meaning less energy is concentrated at the antipode.

„But our results go beyond Chicxulub. We can, in principle, now estimate how large a meteorite would have to have been to cause catastrophic events. For instance, we found that if you increase the radius of the Chicxulub meteorite by a factor of five while leaving its velocity and density the same, it would have been large enough to at least fracture rocks on the opposite side of the planet. Our model can be used to estimate the magnitude and effect of other major impacts in Earth's past. A similar model could be used to study other examples of antipodal structures in the solar system, such as the strange region opposite the gigantic Caloris Basin crater on Mercury.

„Also, such a model can help examine the interior of a moon or planet by comparing the size of the crater to the amount of antipodal disruption — you only need two pictures, basically. One could correlate a certain impact magnitude with the observed antipodal effect — which is dependent on the object's surface features — and better understand the heterogeneity of the surface by how the energy was distributed between those two points. That can reveal information about not only the surface structure of the body at the time of the impact, but also the interior, such as if the planet has a hard core.”

This research was supported by the National Science Foundation and the German Academic Exchange Service.

Morgan Kelly

Written by admin

Dodaj komentarz

Twój adres email nie zostanie opublikowany. Pola, których wypełnienie jest wymagane, są oznaczone symbolem *